
Distributed Engineering

 Systems Software GmbH

What’s needed to make

‘Model-Driven’
Mainstream?

CODE Generation 2013

April 10-12

Cambridge, UK

Jürgen Mutschall
Distributed Engineering Systems Software GmbH

2

Distributed Engineering

 Systems Software GmbH

Jürgen Mutschall

1989 Designer of development tools for the visual programming of power plant
 automation systems for ABB.

1991 Founder of a consulting company for object-oriented software development

1996 Founder and CEO of Distributed Engineering Systems Software GmbH,
 Mannheim; distributed content management solutions

1999 Co-Founder of Merlin Software Engineering GmbH, Baden-Baden;
 a company dedicated to the development of a model-driven
 engineering tools, discontinued in 2005

Since Involved in projects based on the ideas of Model Driven Software Development,

2004 active model transformation and incremental code generation.

Took part in multiple large scale international projects as project manager, architect

and consultant. (Business areas Process Automation and Banking).

 … designs and develops model driven software tools and

visual programming languages for more than 20 years

3

Distributed Engineering

 Systems Software GmbH Some Fundamental Assumptions for

Model Driven Software Development

 Models are considered equal to code.

 Models are (semi)automatically transformed to code.

 A domain model describes the conceptual fabric of a

problem domain.

 An accurate domain model ensures the agreement of

all stakeholders about the scope and meaning of the

concepts in the problem domain.

 The domain model should cover all layers of

abstraction (separation of concern).

 Descriptive models are used for analysis and

discussion.

 Prescriptive models are more formal and are

used to (automatically) construct a target system.

4

Distributed Engineering

 Systems Software GmbH Model-Driven Technologies

and Business Awareness

 The MD Progress is slow.

 People are happy to create DSLs in isolation, ignoring
the generic capability of standard modeling languages
like UML.

 ‘Model-Driven’ seems to be a playground for
programmers only. The MD community is technical
driven.

 Commercially the adoption of new MD tools is harder
than 5 years before.

 The envisioned advances for the organizations are rarely
accomplished.

 The existing (technical) MD eco-system is not enough for
business adoption.

 MD technologies have to become a commodity instead
of a risk for business.

 Organizational adoption (increasing productivity and
quality) of MD is a task for managers and politicians.

 One thing all participants of last year's final panel discussion agreed

on: "Model Driven is not mainstream and the business owners and

the organizations are still not aware of the potential benefits".

Andrew Watson, Wim Bast, Steven Kelly, Darius Silingas and Markus Völter; panel discussion at Code Generation 2012

5

Distributed Engineering

 Systems Software GmbH The (Slow) Evolution of

Model-Driven Technologies
From Programming to Modeling and Back …

ER-Diagrams (1976)

CASE Tools (1982)

UML (1997)

EMF (2002)

MDA (2003)

Language Workbenches (2005)

BPMN (2007)

DSLs (2008)

???

6

Distributed Engineering

 Systems Software GmbH Architecture Diagrams --

The Pictorial Use of Models

 Descriptive Models
 sometimes called “System Diagrams” or “System Architecture”

 UML-/BPMN-Tool as a drawing tool or Microsoft Visio / PowerPoint

 Often used for business specification and documentation

 Only a small part of UML is used, usually a transcription of simple box
and line diagrams.

 No differentiation of classes, objects,
components or systems.

 The models do not pretend to be formal,
complete or consistent.

 The construction of the software solution is
only loosely coupled to the models.

 On system changes the models become
outdated and are usually not synchronized
with the models.

Graphical Modeling as an art of Communication and Documentation

7

Distributed Engineering

 Systems Software GmbH Business and Data Modeling --

The Restricted Use of Models

 Self-restricting to some aspects of modeling

 e.g. persistence or workflow

 Good tool and platform support by major vendors

 e.g. IBM, CA, Oracle

 Often Vendor Lock-in

 Modeling as a kind of configuration

 Often used in combination with 4GL and script languages.

 “Good Enough”-approach with the good

separation of concern but with a focus on

system construction and not on

conceptual domain modeling.

 Huge projects often uses a “tool zoo”

for forward engineering.

 More simple models for the business users. The promise of
easy to use tools and more consistent descriptions of
business requirements.

8

Distributed Engineering

 Systems Software GmbH Domain Specific Languages --

The Programmatic Use of Models

 Most software developers don’t want to model.

 The vision of Programming, that the distinction between modeling

and programming vanishes is (still) not accomplished.

 It seams to be much more productive, and often less work, to build

DSLs with “real” language engineering environments, as opposed to

using UML profiles or graphical workbenches.

 The advances in building projectional/

structural editors for DSLs and render an

integrated, interactive visualization for

different surface syntaxes (e.g. including

tables) improves the modeling experience

and makes it more like programming.

A “workaround” approach for developers

Markus Voelter et al.: DSL Engineering (2013)

9

Distributed Engineering

 Systems Software GmbH

Hypothesis 1:

Standards, especially UML, are established, but

not well accepted in the software developers community

 Developers do not like to model.

 Developers like programmatic modeling approaches

 e.g. EMF/Ecore, language tools

 Software architects, designers and programmers prefer informal

box-line diagrams.

 They appreciate the freedom of “artistic interpretation”.

 In most legacy projects the programmers document the final code

by UML diagrams (and powerpoint slides) and technical system

manuals.

 Developers adopt MD technologies only halfhearted.

See surveys about acceptance and use of Model-Driven technologies (2010/2012)

10

Distributed Engineering

 Systems Software GmbH

Hypothesis 2:
Usually there is no knowledge about

Model-Driven technologies in big budget projects available

 Only a few team members of a software project have (potentially) MD know-how

 A typical legacy project (e.g. JEE) resources breakdown

 10% project management

 10% business/product management

 10% business specification

 20% hardware, infrastructure, security and database management

 20% test definition, management and execution

 10% off-shore / team coordination

 5% software design / technical specification

 15% software development

 Today’s technical challenges are handled with a lot of money

and methodologies of yesterday.

 Maybe there is NO need for Model-Driven technologies.

11

Distributed Engineering

 Systems Software GmbH

Hypothesis 3:
Business management and the organization

have to initiate the adoption of MD technologies

 Money talks.

 When money becomes tight the management searches for
approaches to increase productivity and to reduce costs.

 Drivers and opportunities:

 The competition is cheaper.

 The competition is faster.

 Quality assurance / testing becomes
more and more expensive.

 Every next-gen product has to be developed
from scratch and with a bigger budget than
it’s predecessor.

 Projects: MD technologies as a coup
 Buy consultancy

 Organizations: Build MD know-how and skills
 Recruit and employ permanently MD experts and developers

12

Distributed Engineering

 Systems Software GmbH

Hypothesis 4:
The adoption of MD technologies

can only start at the grass-roots level.

 Detailed technical know-how is needed to understand MD

technologies. So only the MD expert (developer) can initiate the

adoption of new technologies and tools.

 Using MD technologies is nothing for the faint-hearted. It takes a

long time to introduce a new kind of thinking.

 New languages and tools

 LoC are no benchmark anymore

 Levels of abstraction

 Code generation

 System configuration

 Entity / persistence / service modeling

 Domain Modeling

 DSL Modeling

 Software factories / Feature modeling

 Business workflow modeling

13

Distributed Engineering

 Systems Software GmbH

Recommendations to MD experts

 Convince your (developer) colleagues
 “Modeling is good for you!”

 Every manual written line of code is bad!

 Help to … leverage research results and use standards
 Standards are good! Do not reinvent the wheel again and again

 UML, QVT, fUML, ALF, BMNP, IFML, …

 New technologies

 Model interpretation / execution / debugging

 Bidirectional synchronization (e.g. Triple Graph Grammars)

 Scannerless parsers, structured editors and incremental generator technologies

 Help to … unleash the unused computing power for modeling
 200 times more computing power since Eclipse 1.0 (2001)

 100 times more memory for in-memory transformations since JDT 1.0

 Model refactoring

 No slow Batch generator tools anymore

 Incremental generation, background processes

 Seamless IDE integration

 Synchronization of visualization, model and code

 Build … the next-gen tools for MDSD

//upload.wikimedia.org/wikipedia/commons/c/c9/Gears_and_Stuff.png

14

Distributed Engineering

 Systems Software GmbH Be .. an Evangelist for

Model-Driven Technologies

 Think “Model First”
 Programming fills the gaps

 Go for “Agile Modeling”
 Allow model changes at any time

 Keep your (business) model in sync with your code

 Search for the best-fitting tools

 Learn and teach methodologies, technology
and standards.

 Think in the customer time scales … 5-10 years

 Help the customer to think in domain models
and not in low level requirements

 See the big picture
 Complete software product lifecycle

 Product families

 Software factories

15

Distributed Engineering

 Systems Software GmbH

References and Links

 Surveys about acceptance and use of model-driven

technologies

 Adrian Kuhn et. Al: An Exploratory Study of Forces and Frictions

affecting Large-Scale Model-Driven Development (2012)

 FZI Karlsruhe / Generative Software GmbH:

Umfrage zu Verbreitung und Einsatz modellgetriebener

Softwareentwicklung (2010)

 Further information about DSL Engineering

 http://www.voelter.de, http://mbeddr.wordpress.com

 Images and illustrations

 http://de.fotolia.com, http://commons.wikimedia.org

http://www.voelter.de/
http://mbeddr.wordpress.com/
http://de.fotolia.com/
http://commons.wikimedia.org/wiki/Main_Page

16

Distributed Engineering

 Systems Software GmbH

CONTACT

INFO

http://www.desys.com

Distributed Engineering Systems

email: juergen.mutschall@desys.com

phone: +49-171-5749200

